
Combinatorics, 2016 Fall, USTC

Week 9, November 1 and 3

Erdős-Ko-Rado’s Theorem

Theorem 1 (Erdős-Ko-Rado). When n > 2k, the largest intersecting family

F ⊆
(
[n]
k

)
is
(
n−1
k−1

)
. If n > 2k, then the intersecting family F with F =

(
n−1
k−1

)
must be a star.

Proof. Proof for the extremal case F =
(
n−1
k−1

)
.

We want to show show F must be a star. From the preview proof, we

see that:

• For any cycle permutation π, |Fπ| = k.

• Moreover, for π = (a1, a2, ..., an), Fπ = {A1, A2, ..., Ak} where Aj =

{aj, aj+1, ..., aj+k−1} for 1 6 j 6 k

Fix π, let Fπ = {A1, A2, ..., Ak} and let A1 ∩ A2 ∩ ... ∩ Ak = {1}.

If all subsets of F contain 1, then F is a star, we are done.

So we may assume that ∃A0 ∈ F s.t. 1 /∈ A0.

Claim 1: ∀B ∈
(
A1∪Ak\{1}

k−1

)
has B ∪ {1} ∈ F

Pf of Claim 1: Consider another cycle permutation π
′ with A1, Ak un-

changed, but the order of the integers insider A1 \ {1} and Ak \ {1} are

changed.

Since A1, Ak ∈ Fπ′ , by (2) all other k−sets in A1 ∪ Ak formed by k

consective integers on π′ are also in Fπ′ ⊆ F . Repeating using the argument,

we prove the claim 1.
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Claim 2: Note that we have A0 ∈ F with 1 /∈ A0. Then A0 ⊆ A1∪Ak\{1}

Pf of Claim 2: Otherwise, then |A1∪Ak−A0| > k (as |A1∪Ak| = 2k−1).

So, we can pick a k−subset B ⊆ A1∪Ak−A0 s.t. 1 ∈ B. By Claim 1, B ∈ F .

But A0 ∩B = ∅, contraducting that F is intersecting. This proves Claim 2.

Claim 3:
(
A1∪Ak

k

)
⊆ F

Pf of Claim 3: Consider any i ∈ A0, let Bi be s.t.

qij =

 A0 ∪Bi = A1 ∪ Ak

A0 ∩Bi = {i}

By Claim 1, Bi ∈ F . By (2) and the same proof of Claim 1, we can

obtain that the “new" Claim 1: all k− subsets of A1∪Ak containing i belong

to F . This implies that any k−subsets B of A1 ∪ Ak with B ∩ A0 = ∅

belongs to F .

⇔
(
A1 ∪ Ak

k

)
⊆ F

Claim 4:
(
A1∪Ak

k

)
= F

Pf of Claim 4: Suppose that ∃B ∈ F s.t. B * A1 ∪ Ak, that is |A1 ∪

Ak − A0| > k. So ∃B′ ⊆ A1 ∪ Ak − B with |B′ | = k. By Claim 3, B′ ∈ F .

But B ∩B′
= ∅, a contradiction. This proves Claim 4.

Now, we see |F | =
(
2k−1
k

)
=
(
2k−1
k−1

)
<
(
n−1
k−1

)
= |F |. This completes the

proof.

Definition 2. A Kneser graph KG(n, k) for n > 2k is a graph with vertex

set
(
[n]
k

)
such that for A,B ∈

(
[n]
k

)
, A is adjacent to B if and only if A∩B = ∅.

Now we note that any intersecting family F of
(
[n]
k

)
is just an indepen-
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dent set in KG(n, k). Therefore, Erdős-Ko-Rado Thm is equivalent to that

α(KG(n, k)) 6
(
n−1
k−1

)
.

Definition 3. The adjacency matrix AG = (aij)n×n of an n− vertex graph

G is defined by

aii = 0

aij =

1, if ij ∈ E(G)

0, otherwise for i 6= j

Definition 4. The eigenvalues λ1 > λ2 > ... > λn of AG is also called the

eigenvalues of the graph G. The eigenvectors v1,v2, ...,vn of AG s.t.
AGvi = λivi

||vi|| = 1

vi⊥vj

are called the orthonormal eigenvectors of G.

Definition 5. A graph G is regular if all vertices have the same degree.

Theorem 6 (Hoffman’s Theorem). If an n-vertex graph G is regular with

eigenvalues λ1 > λ2 > ... > λn, then α(G) 6 n · −λn
λ1 − λn

Proof. Let v1, ...,vn be the corresponding eigenvectors of λ1, ..., λn s.t.
AGv1 = λiv1,

||vi|| = 1,

< vi,vj >= 0, ∀i 6= j.
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Let I be an independent set of G with |I| = α(G). Let 1I ∈ Rn s.t. its ith

coordinate is 1 if i ∈ I, and is 0 if i /∈ I. Then we can write

1I =
n∑
i=1

αivi.

Then

|I| =< 1I ,1I >=
n∑
i=1

α2
i (1)

and αi =< 1I ,vi >.

Since G is regular, (say every vertex has degree d,) We have that λ1 = d

and v1 = (1/
√
n, ..., 1/

√
n)T . (Think why λ1 = d is maximum?) So

α1 =< 1I ,v1 >=
|I|√
n

(2)

Since I is an independent set of G,

1TI AG1I =
∑
i,j

xiaijxj = 0,

where

1I = (xi), xi =

1, i ∈ I

0, i /∈ I.
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Also,

0 = 1TI AG1I =
n∑
i=1

α2
iλi

≥ α2
1λ1 + (α2

2 + · · ·+ α2
n)λn

by (1) (2)
=

|I|2

n
λ1 +

(
|I| − |I|

2

n

)
λn

⇒ 0 ≥ |I|
2

n
λ1 +

(
|I| − |I|

2

n

)
λn

⇒ |I|
(
|I|
n
λ1 + λn −

|I|
n
λn

)
≤ 0

⇒ |I|
n
(λ1 − λn) ≤ −λn

⇒ α(G) = |I| ≤ n · −λ
λ1 − λn

.

Lemma 7. The eigenvalues of Kneser graph KG(n, k) are:

uj := (−1)j
(
n− k − j
k − j

)
of multiplicity

(
n

j

)
−
(

n

j − 1

)

for every 0 ≤ j ≤ k.

Remark. For more information, see GTM 207, 9.3 and 9.4.

Recall: Any intersecting family F is an independent set of KG(n, k). Let

α(G) = maxI |I| over all independent sets I of G. Thus, Erdős-Ko-Rado’s

Theorem ⇔ α(KG(n, k)) ≤
(
n−1
k−1

)
.

The second proof of Erdős-Ko-Rado’s Theorem. Consider the eigenvalues of
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KG(n, k), say λ1 ≥ λ2 · · ·λ(nk), where λ1 =
(
n−k
k

)
= u0, λ(nk) = −

(
n−k−1
k−1

)
=

u1.

By Hoffman’s bound,

α(KG(n, k)) ≤
(
n

k

) −λ(nk)
λ1 − λ(nk)

=

(
n

k

) (
n−k−1
k−1

)(
n−k
k

)
+
(
n−k−1
k−1

) =

(
n− 1

k − 1

)
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