Erdős-Ko-Rado's Theorem

Theorem 1 (Erdős-Ko-Rado). When $n \geqslant 2 k$, the largest intersecting family $\mathscr{F} \subseteq\binom{[n]}{k}$ is $\binom{n-1}{k-1}$. If $n>2 k$, then the intersecting family \mathscr{F} with $\mathscr{F}=\binom{n-1}{k-1}$ must be a star.

Proof. Proof for the extremal case $\mathscr{F}=\binom{n-1}{k-1}$.
We want to show show \mathscr{F} must be a star. From the preview proof, we see that:

- For any cycle permutation $\pi,\left|\mathscr{F}_{\pi}\right|=k$.
- Moreover, for $\pi=\left(a_{1}, a_{2}, \ldots, a_{n}\right), \mathscr{F}_{\pi}=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ where $A_{j}=$ $\left\{a_{j}, a_{j+1}, \ldots, a_{j+k-1}\right\}$ for $1 \leqslant j \leqslant k$

Fix π, let $\mathscr{F}_{\pi}=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ and let $A_{1} \cap A_{2} \cap \ldots \cap A_{k}=\{1\}$.
If all subsets of \mathscr{F} contain 1 , then \mathscr{F} is a star, we are done.
So we may assume that $\exists A_{0} \in \mathscr{F}$ s.t. $1 \notin A_{0}$.
Claim 1: $\forall B \in\binom{A_{1} \cup A_{k} \backslash\{1\}}{k-1}$ has $B \cup\{1\} \in \mathscr{F}$
Pf of Claim 1: Consider another cycle permutation π^{\prime} with A_{1}, A_{k} unchanged, but the order of the integers insider $A_{1} \backslash\{1\}$ and $A_{k} \backslash\{1\}$ are changed.

Since $A_{1}, A_{k} \in \mathscr{F}_{\pi^{\prime}}$, by (2) all other k-sets in $A_{1} \cup A_{k}$ formed by k consective integers on π^{\prime} are also in $\mathscr{F}_{\pi^{\prime}} \subseteq \mathscr{F}$. Repeating using the argument, we prove the claim 1.
$\underline{\text { Claim 2: Note that we have } A_{0} \in \mathscr{F} \text { with } 1 \notin A_{0} \text {. Then } A_{0} \subseteq A_{1} \cup A_{k} \backslash\{1\}, ~(1) ~}$
Pf of Claim 2: Otherwise, then $\left|A_{1} \cup A_{k}-A_{0}\right| \geqslant k\left(\right.$ as $\left.\left|A_{1} \cup A_{k}\right|=2 k-1\right)$. So, we can pick a k-subset $B \subseteq A_{1} \cup A_{k}-A_{0}$ s.t. $1 \in B$. By Claim $1, B \in \mathscr{F}$. But $A_{0} \cap B=\varnothing$, contraducting that \mathscr{F} is intersecting. This proves Claim 2.
$\underline{\text { Claim 3: }}\binom{A_{1} \cup A_{k}}{k} \subseteq \mathscr{F}$
Pf of Claim 3: Consider any $i \in A_{0}$, let B_{i} be s.t.

$$
q_{i j}=\left\{\begin{array}{l}
A_{0} \cup B_{i}=A_{1} \cup A_{k} \\
A_{0} \cap B_{i}=\{i\}
\end{array}\right.
$$

By Claim 1, $B_{i} \in \mathscr{F}$. By (2) and the same proof of Claim 1, we can obtain that the "new" Claim 1: all k - subsets of $A_{1} \cup A_{k}$ containing i belong to \mathscr{F}. This implies that any k-subsets B of $A_{1} \cup A_{k}$ with $B \cap A_{0}=\varnothing$ belongs to \mathscr{F}.

$$
\Leftrightarrow\binom{A_{1} \cup A_{k}}{k} \subseteq \mathscr{F}
$$

Claim 4: $\binom{A_{1} \cup A_{k}}{k}=\mathscr{F}$
Pf of Claim 4: Suppose that $\exists B \in \mathscr{F}$ s.t. $B \nsubseteq A_{1} \cup A_{k}$, that is $\mid A_{1} \cup$ $A_{k}-A_{0} \mid \geqslant k$. So $\exists B^{\prime} \subseteq A_{1} \cup A_{k}-B$ with $\left|B^{\prime}\right|=k$. By Claim $3, B^{\prime} \in \mathscr{F}$. But $B \cap B^{\prime}=\varnothing$, a contradiction. This proves Claim 4.

Now, we see $|\mathscr{F}|=\binom{2 k-1}{k}=\binom{2 k-1}{k-1}<\binom{n-1}{k-1}=|\mathscr{F}|$. This completes the proof.

Definition 2. A Kneser graph $K G(n, k)$ for $n \geqslant 2 k$ is a graph with vertex set $\binom{[n]}{k}$ such that for $A, B \in\binom{[n]}{k}, A$ is adjacent to B if and only if $A \cap B=\varnothing$.

Now we note that any intersecting family \mathscr{F} of $\binom{[n]}{k}$ is just an indepen-
dent set in $K G(n, k)$. Therefore, Erdős-Ko-Rado Thm is equivalent to that $\alpha(K G(n, k)) \leqslant\binom{ n-1}{k-1}$.

Definition 3. The adjacency matrix $A_{G}=\left(a_{i j}\right)_{n \times n}$ of an n - vertex graph G is defined by

$$
\begin{gathered}
a_{i i}=0 \\
a_{i j}=\left\{\begin{array}{l}
1, \text { if } i j \in E(G) \\
0, \text { otherwise for } i \neq j
\end{array}\right.
\end{gathered}
$$

Definition 4. The eigenvalues $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}$ of A_{G} is also called the eigenvalues of the graph G. The eigenvectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ of A_{G} s.t.

$$
\left\{\begin{array}{l}
A_{G} \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{i} \\
\left\|\boldsymbol{v}_{i}\right\|=1 \\
\boldsymbol{v}_{i} \perp \boldsymbol{v}_{j}
\end{array}\right.
$$

are called the orthonormal eigenvectors of G.
Definition 5. A graph G is regular if all vertices have the same degree.

Theorem 6 (Hoffman's Theorem). If an n-vertex graph G is regular with eigenvalues $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}$, then $\alpha(G) \leqslant n \cdot \frac{-\lambda_{n}}{\lambda_{1}-\lambda_{n}}$

Proof. Let $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ be the corresponding eigenvectors of $\lambda_{1}, \ldots, \lambda_{n}$ s.t.

$$
\left\{\begin{array}{l}
A_{G} \boldsymbol{v}_{1}=\lambda_{i} \boldsymbol{v}_{1}, \\
\left\|\boldsymbol{v}_{i}\right\|=1 \\
<\boldsymbol{v}_{i}, \boldsymbol{v}_{j}>=0, \forall i \neq j
\end{array}\right.
$$

Let I be an independent set of G with $|I|=\alpha(G)$. Let $\mathbf{1}_{I} \in R^{n}$ s.t. its $i^{\text {th }}$ coordinate is 1 if $i \in I$, and is 0 if $i \notin I$. Then we can write

$$
\mathbf{1}_{I}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{v}_{i} .
$$

Then

$$
\begin{equation*}
|I|=<\mathbf{1}_{I}, \mathbf{1}_{I}>=\sum_{i=1}^{n} \alpha_{i}^{2} \tag{1}
\end{equation*}
$$

and $\alpha_{i}=<\mathbf{1}_{I}, \boldsymbol{v}_{i}>$.
Since G is regular, (say every vertex has degree d,) We have that $\lambda_{1}=d$ and $\boldsymbol{v}_{1}=(1 / \sqrt{n}, \ldots, 1 / \sqrt{n})^{T}$. (Think why $\lambda_{1}=d$ is maximum?) So

$$
\begin{equation*}
\alpha_{1}=<\mathbf{1}_{I}, \boldsymbol{v}_{1}>=\frac{|I|}{\sqrt{n}} \tag{2}
\end{equation*}
$$

Since I is an independent set of G,

$$
\mathbf{1}_{I}^{T} A_{G} \mathbf{1}_{I}=\sum_{i, j} x_{i} a_{i j} x_{j}=0
$$

where

$$
\mathbf{1}_{I}=\left(x_{i}\right), x_{i}= \begin{cases}1, & i \in I \\ 0, & i \notin I\end{cases}
$$

Also,

$$
\begin{aligned}
& 0=\mathbf{1}_{I}^{T} A_{G} \mathbf{1}_{I}=\sum_{i=1}^{n} \alpha_{i}^{2} \lambda_{i} \\
& \geq \alpha_{1}^{2} \lambda_{1}+\left(\alpha_{2}^{2}+\cdots+\alpha_{n}^{2}\right) \lambda_{n} \\
& \stackrel{\text { by }}{(1)} \stackrel{(2)}{=} \frac{|I|^{2}}{n} \lambda_{1}+\left(|I|-\frac{|I|^{2}}{n}\right) \lambda_{n} \\
& \Rightarrow 0 \geq \frac{|I|^{2}}{n} \lambda_{1}+\left(|I|-\frac{|I|^{2}}{n}\right) \lambda_{n} \\
& \Rightarrow|I|\left(\frac{|I|}{n} \lambda_{1}+\lambda_{n}-\frac{|I|}{n} \lambda_{n}\right) \leq 0 \\
& \Rightarrow \frac{|I|}{n}\left(\lambda_{1}-\lambda_{n}\right) \leq-\lambda_{n} \\
& \Rightarrow \alpha(G)=|I| \leq n \cdot \frac{-\lambda}{\lambda_{1}-\lambda_{n}} .
\end{aligned}
$$

Lemma 7. The eigenvalues of Kneser graph $K G(n, k)$ are:

$$
u_{j}:=(-1)^{j}\binom{n-k-j}{k-j} \text { of multiplicity }\binom{n}{j}-\binom{n}{j-1}
$$

for every $0 \leq j \leq k$.
Remark. For more information, see GTM 207, 9.3 and 9.4.
Recall: Any intersecting family \mathscr{F} is an independent set of $K G(n, k)$. Let $\alpha(G)=\max _{I}|I|$ over all independent sets I of G. Thus, Erdős-Ko-Rado's Theorem $\Leftrightarrow \alpha(K G(n, k)) \leq\binom{ n-1}{k-1}$.

The second proof of Erdôs-Ko-Rado's Theorem. Consider the eigenvalues of
$K G(n, k)$, say $\lambda_{1} \geq \lambda_{2} \cdots \lambda_{\binom{n}{k}}$, where $\lambda_{1}=\binom{n-k}{k}=u_{0}, \lambda_{\binom{n}{k}}=-\binom{n-k-1}{k-1}=$ u_{1}.

By Hoffman's bound,

$$
\alpha(K G(n, k)) \leq\binom{ n}{k} \frac{-\lambda_{\binom{n}{k}}}{\lambda_{1}-\lambda_{\binom{n}{k}}}=\binom{n}{k} \frac{\binom{n-k-1}{k-1}}{\binom{n-k}{k}+\binom{n-k-1}{k-1}}=\binom{n-1}{k-1}
$$

