Combinatorics, 2016 Fall, USTC

Week 9, November 1 and 3

Erdős-Ko-Rado's Theorem

Theorem 1 (Erdős-Ko-Rado). When $n \ge 2k$, the largest intersecting family $\mathscr{F} \subseteq {n \brack k}$ is ${n-1 \brack k-1}$. If n > 2k, then the intersecting family \mathscr{F} with $\mathscr{F} = {n-1 \brack k-1}$ must be a star.

Proof. Proof for the extremal case $\mathscr{F} = \binom{n-1}{k-1}$.

We want to show show \mathcal{F} must be a star. From the preview proof, we see that:

- For any cycle permutation π , $|\mathscr{F}_{\pi}| = k$.
- Moreover, for $\pi = (a_1, a_2, ..., a_n)$, $\mathscr{F}_{\pi} = \{A_1, A_2, ..., A_k\}$ where $A_j = \{a_j, a_{j+1}, ..., a_{j+k-1}\}$ for $1 \leq j \leq k$

Fix π , let $\mathscr{F}_{\pi} = \{A_1, A_2, ..., A_k\}$ and let $A_1 \cap A_2 \cap ... \cap A_k = \{1\}$.

If all subsets of ${\mathscr F}$ contain 1, then ${\mathscr F}$ is a star, we are done.

So we may assume that $\exists A_0 \in \mathscr{F} \text{ s.t. } 1 \notin A_0$.

Claim 1:
$$\forall B \in \binom{A_1 \cup A_k \setminus \{1\}}{k-1}$$
 has $B \cup \{1\} \in \mathscr{F}$

Pf of Claim 1: Consider another cycle permutation π' with A_1, A_k unchanged, but the order of the integers insider $A_1 \setminus \{1\}$ and $A_k \setminus \{1\}$ are changed.

Since $A_1, A_k \in \mathscr{F}_{\pi'}$, by (2) all other k-sets in $A_1 \cup A_k$ formed by k consective integers on π' are also in $\mathscr{F}_{\pi'} \subseteq \mathscr{F}$. Repeating using the argument, we prove the claim 1.

Claim 2: Note that we have $A_0 \in \mathscr{F}$ with $1 \notin A_0$. Then $A_0 \subseteq A_1 \cup A_k \setminus \{1\}$ Pf of Claim 2: Otherwise, then $|A_1 \cup A_k - A_0| \geqslant k$ (as $|A_1 \cup A_k| = 2k - 1$). So, we can pick a k-subset $B \subseteq A_1 \cup A_k - A_0$ s.t. $1 \in B$. By Claim $1, B \in \mathscr{F}$. But $A_0 \cap B = \varnothing$, contraducting that \mathscr{F} is intersecting. This proves Claim 2.

Claim 3:
$$\binom{A_1 \cup A_k}{k} \subseteq \mathscr{F}$$

Pf of Claim 3: Consider any $i \in A_0$, let B_i be s.t.

$$q_{ij} = \begin{cases} A_0 \cup B_i = A_1 \cup A_k \\ A_0 \cap B_i = \{i\} \end{cases}$$

By Claim 1, $B_i \in \mathscr{F}$. By (2) and the same proof of Claim 1, we can obtain that the "new" Claim 1: all k- subsets of $A_1 \cup A_k$ containing i belong to \mathscr{F} . This implies that any k- subsets B of $A_1 \cup A_k$ with $B \cap A_0 = \varnothing$ belongs to \mathscr{F} .

$$\Leftrightarrow \binom{A_1 \cup A_k}{k} \subseteq \mathscr{F}$$

$$\underline{\text{Claim 4}} : \binom{A_1 \cup A_k}{k} = \mathscr{F}$$

Pf of Claim 4: Suppose that $\exists B \in \mathscr{F} \text{ s.t. } B \not\subseteq A_1 \cup A_k$, that is $|A_1 \cup A_k - A_0| \geqslant k$. So $\exists B' \subseteq A_1 \cup A_k - B$ with |B'| = k. By Claim 3, $B' \in \mathscr{F}$. But $B \cap B' = \varnothing$, a contradiction. This proves Claim 4.

Now, we see $|\mathscr{F}| = {2k-1 \choose k} = {2k-1 \choose k-1} < {n-1 \choose k-1} = |\mathscr{F}|$. This completes the proof.

Definition 2. A Kneser graph KG(n,k) for $n \ge 2k$ is a graph with vertex set $\binom{[n]}{k}$ such that for $A, B \in \binom{[n]}{k}$, A is adjacent to B if and only if $A \cap B = \emptyset$.

Now we note that any intersecting family \mathscr{F} of $\binom{[n]}{k}$ is just an indepen-

dent set in KG(n,k). Therefore, Erdős-Ko-Rado Thm is equivalent to that $\alpha(KG(n,k)) \leq \binom{n-1}{k-1}$.

Definition 3. The adjacency matrix $A_G = (a_{ij})_{n \times n}$ of an n- vertex graph G is defined by

$$a_{ii} = 0$$

$$a_{ij} = \begin{cases} 1, & \text{if } ij \in E(G) \\ 0, & \text{otherwise for } i \neq j \end{cases}$$

Definition 4. The eigenvalues $\lambda_1 \geqslant \lambda_2 \geqslant ... \geqslant \lambda_n$ of A_G is also called the eigenvalues of the graph G. The eigenvectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ of A_G s.t.

$$egin{cases} A_G oldsymbol{v}_i = \lambda_i oldsymbol{v}_i \ ||oldsymbol{v}_i|| = 1 \ oldsymbol{v}_i oldsymbol{oldsymbol{\perp}} oldsymbol{v}_j \end{cases}$$

are called the orthonormal eigenvectors of G.

Definition 5. A graph G is regular if all vertices have the same degree.

Theorem 6 (Hoffman's Theorem). If an n-vertex graph G is regular with eigenvalues $\lambda_1 \geqslant \lambda_2 \geqslant ... \geqslant \lambda_n$, then $\alpha(G) \leqslant n \cdot \frac{-\lambda_n}{\lambda_1 - \lambda_n}$

Proof. Let $v_1, ..., v_n$ be the corresponding eigenvectors of $\lambda_1, ..., \lambda_n$ s.t.

$$egin{cases} A_G oldsymbol{v}_1 = \lambda_i oldsymbol{v}_1, \ ||oldsymbol{v}_i|| = 1, \ |\langle oldsymbol{v}_i, oldsymbol{v}_j> = 0, \ orall i
eq j. \end{cases}$$

Let I be an independent set of G with $|I| = \alpha(G)$. Let $\mathbf{1}_I \in \mathbb{R}^n$ s.t. its i^{th} coordinate is 1 if $i \in I$, and is 0 if $i \notin I$. Then we can write

$$\mathbf{1}_I = \sum_{i=1}^n \alpha_i \boldsymbol{v}_i.$$

Then

$$|I| = \langle \mathbf{1}_I, \mathbf{1}_I \rangle = \sum_{i=1}^n \alpha_i^2 \tag{1}$$

and $\alpha_i = <\mathbf{1}_I, \mathbf{v}_i>$.

Since G is regular, (say every vertex has degree d,) We have that $\lambda_1 = d$ and $\mathbf{v}_1 = (1/\sqrt{n}, ..., 1/\sqrt{n})^T$. (Think why $\lambda_1 = d$ is maximum?) So

$$\alpha_1 = \langle \mathbf{1}_I, \mathbf{v}_1 \rangle = \frac{|I|}{\sqrt{n}} \tag{2}$$

Since I is an independent set of G,

$$\mathbf{1}_{I}^{T} A_{G} \mathbf{1}_{I} = \sum_{i,j} x_{i} a_{ij} x_{j} = 0,$$

where

$$\mathbf{1}_{I} = (x_{i}), \ x_{i} = \begin{cases} 1, & i \in I \\ 0, & i \notin I. \end{cases}$$

Also,

$$0 = \mathbf{1}_{I}^{T} A_{G} \mathbf{1}_{I} = \sum_{i=1}^{n} \alpha_{i}^{2} \lambda_{i}$$

$$\geq \alpha_{1}^{2} \lambda_{1} + (\alpha_{2}^{2} + \dots + \alpha_{n}^{2}) \lambda_{n}$$

$$\stackrel{\text{by } (1)}{=} {}^{(2)} \frac{|I|^{2}}{n} \lambda_{1} + \left(|I| - \frac{|I|^{2}}{n}\right) \lambda_{n}$$

$$\Rightarrow 0 \geq \frac{|I|^{2}}{n} \lambda_{1} + \left(|I| - \frac{|I|^{2}}{n}\right) \lambda_{n}$$

$$\Rightarrow |I| \left(\frac{|I|}{n} \lambda_{1} + \lambda_{n} - \frac{|I|}{n} \lambda_{n}\right) \leq 0$$

$$\Rightarrow \frac{|I|}{n} (\lambda_{1} - \lambda_{n}) \leq -\lambda_{n}$$

$$\Rightarrow \alpha(G) = |I| \leq n \cdot \frac{-\lambda}{\lambda_{1} - \lambda_{n}}.$$

Lemma 7. The eigenvalues of Kneser graph KG(n,k) are:

$$u_j := (-1)^j \binom{n-k-j}{k-j}$$
 of multiplicity $\binom{n}{j} - \binom{n}{j-1}$

for every $0 \le j \le k$.

Remark. For more information, see GTM 207, 9.3 and 9.4.

Recall: Any intersecting family \mathscr{F} is an independent set of KG(n,k). Let $\alpha(G) = \max_{I} |I|$ over all independent sets I of G. Thus, Erdős-Ko-Rado's Theorem $\Leftrightarrow \alpha(KG(n,k)) \leq \binom{n-1}{k-1}$.

The second proof of Erdős-Ko-Rado's Theorem. Consider the eigenvalues of

KG(n,k), say $\lambda_1 \geq \lambda_2 \cdots \lambda_{\binom{n}{k}}$, where $\lambda_1 = \binom{n-k}{k} = u_0$, $\lambda_{\binom{n}{k}} = -\binom{n-k-1}{k-1} = u_1$.

By Hoffman's bound,

$$\alpha(KG(n,k)) \le \binom{n}{k} \frac{-\lambda_{\binom{n}{k}}}{\lambda_1 - \lambda_{\binom{n}{k}}} = \binom{n}{k} \frac{\binom{n-k-1}{k-1}}{\binom{n-k}{k} + \binom{n-k-1}{k-1}} = \binom{n-1}{k-1}$$